Fragmentation of Co-ordinated CS₂ via Metal Attack at the Carbon Atom: Formation of the Dinuclear Thiocarbonyl Complex $(Ph_2P[CH_2]_2PPh_2)Pt(\mu-S)Pt(PPh_3)CS$

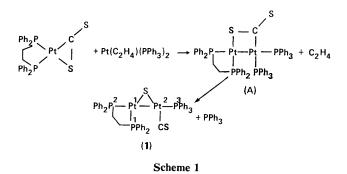
Wanda M. Hawling, Alan Walker,* and Martin A. Woitzik

Scarborough College Chemical Laboratories, University of Toronto, 1265 Military Trial, West Hill, Ontario, Canada M1C 1A4

Attack at the carbon atom of co-ordinated η^2 -CS₂ in the complex Pt(CS₂)(Ph₂P[CH₂]₂PPh₂) by Pt(η^2 -C₂H₄)(PPh₃)₂ in acetone causes fragmentation of CS₂ and yields the novel sulphido-bridged

dinuclear thiocarbonyl complex $(Ph_2P[CH_2]_2PPh_2)Pt(\mu-S)Pt(PPh_3)CS$.

that this approach will offer a more general and facile method for the fragmentation of co-ordinated CS_2 , a topic of significant current interest, than has previously been possible.


The reaction of $Pt(\eta^2-C_2H_4)(PPh_3)_2$ with $Pt(\eta^2-CS_2)(Ph_2P-[CH_2]_2PPh_2)^{\dagger}$ in equimolar amounts in acetone results in the

It has been well documented recently¹ that cleavage of the C-S bond in η^2 -CS₂ complexes is much more difficult than in analogous η^2 -COS complexes of transition metals. Vigorous conditions are often needed to effect such cleavage² and usually sulphur accepting agents such as phosphine,² activated alkynes,³ or even CS₂⁴ are required. In contrast we describe here a facile cleavage of CS₂ in a monomeric η^2 -CS₂ complex involving nucleophilic addition to the carbon atom by a low oxidation state metal complex. It would seem likely

[†] Obtained in our laboratories by phosphine exchange in the complex $Pt(\eta^2$ -CS₂)(PPh₃)₂ in CS₂. $v(CS_2)$ 1141 and 650 cm⁻¹.

rapid formation of a yellow microcrystalline solid (65% yield) which has been characterized[‡] by analysis (C, H, S) and infrared and ³¹P n.m.r. spectroscopy as $(Ph_2P[CH_2]_2$ -

 PPh_2)Pt(μ -S)Pt(PPh_3)CS (1) in which the thiocarbonyl fragment has been transferred to the other platinum atom. This product can be rationalized in terms of nucleophilic attack at the carbon atom of the co-ordinated CS₂ molecule by $Pt(\eta^2-C_2H_4)(PPh_3)_2$ as shown in Scheme 1. Nucleophilic attack by zerovalent phosphine complexes of platinum at the carbon atom of other molecules such as carbenes,⁵ carbynes,⁶ and thiocarbonyls7 to yield dinuclear metal complexes has been reported recently. The infrared spectrum of complex (1) exhibits a very intense band at 1302 cm⁻¹ which is in a characteristic region² for terminally bound thiocarbonyl groups. The complex is air stable and is only sparingly soluble in nonhalogen containing solvents. It is readily soluble in CHCl₃ and CH₃Cl₃ but slow decomposition occurs, in a matter of hours in $CHCl_3$ but over several days in CH_2Cl_2 , to yield dark solutions.

[‡] v(CS) 1302 cm⁻¹ (vs); M_r in CHCl₃ 1060 (1127 calculated); ³¹P (¹H } n.m.r. (CH₂Cl₂) δ 32.09 [dd, P³, ³J (P³, P²) 152.6 Hz, ³J (P³, P¹) 26.7 Hz], 52.69 (d, P¹), and 63.54 p.p.m. (d, P²); ¹⁹⁵Pt satellites: ¹J (P³, Pt²) 2485.3 Hz, ²J (P³, Pt¹) 110.6 Hz, ¹J (P¹, Pt¹) 3308.1 Hz, ²J (P¹, Pt²) 91.6 Hz, ¹J (P², Pt¹) 3353.1 Hz, and ²J (P², Pt²) 346.7 Hz. All ³¹P n.m.r. spectra are with reference to external 85% H₃PO₄. Satisfactory analyses have been obtained for all complexes. Although the (μ -CS₂) intermediate (A) cannot be isolated in this reaction, an analogous complex is the insoluble product formed from the reaction of Pt(η^2 -C₂H₄)(PPh₃)₂ with Pt(η^2 -CS₂)(PPh₃)₂ in acetone. The yellow product (Ph₃P)₂-Pt(μ -CS₂)Pt(PPh₃)₂ has been identified by analysis (C, H, S) and infrared spectroscopy, where v(CS₂) 930 cm⁻¹ (m, br.) compares well with that reported recently⁸ for the related complex Pt₂Cl₂(μ -CS₂)(μ -Ph₂PCH₂PPh₂)₂, the structure of which has been determined by X-ray crystallography. The product while perfectly stable in the solid state immediately decomposes to a mixture of complexes when dissolved in a solvent such as tetrahydrofuran and thus n.m.r. data are precluded.

Further studies on the fragmentation of co-ordinated CS_2 by low oxidation state metal complexes are in progress and it now appears likely that the fragmentation may be reversible in some cases as addition of $Ph_2P[CH_2]_2PPh_2$ to a suspension of (1) in acetone yields a complex analogous to intermediate (A) but containing two 'diphos' molecules ($Ph_2P[CH_2]_2PPh_2$)-

Pt(μ -CS₂)Pt(Ph₂P[CH₂]₂PPh₂). This highly insoluble complex also exhibits ν (CS₂) 929 cm⁻¹ (m, br.) and gives a satisfactory analysis (C, H, S).

Received, 20th September 1982; Com. 1112

References

- 1 T. R. Gaffney and J. A. Ibers, *Inorg. Chem.*, 1982, 21, 2860; 2851; 2854.
- 2 I. S. Butler, Acc. Chem. Res., 1977, 10, 359 and references therein.
- 3 A. J. Carty, F. Hartstock, N. J. Taylor, H. Le Bozec, P. Robert, and P. H. Dixneuf, J. Chem. Soc., Chem. Commun., 1980, 361.
- 4 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 188, 211.
- 5 T. V. Ashworth, J. A. K. Howard, M. Laguna, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1593.
- 6 T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1980, 1609.
- 7 J. C. Jeffery, H. Razay, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1981, 243.
- 8 T. S. Cameron, P. A. Gardner, and K. R. Grundy, J. Organomet. Chem., 1981, 212, C19.